train.py 2.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
Train our RNN on bottlecap or prediction files generated from our CNN.
"""
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger
from models import ResearchModels
from data import DataSet
import time

def train(data_type, seq_length, model, saved_model=None,
          concat=False, class_limit=None, image_shape=None):
    # Set variables.
    nb_epoch = 1000
    batch_size = 32

    # Helper: Save the model.
    checkpointer = ModelCheckpoint(
        filepath='./data/checkpoints/' + model + '-' + data_type + \
            '.{epoch:03d}-{val_loss:.3f}.hdf5',
        verbose=1,
        save_best_only=True)

    # Helper: TensorBoard
    tb = TensorBoard(log_dir='./data/logs')

    # Helper: Stop when we stop learning.
    early_stopper = EarlyStopping(patience=10)

    # Helper: Save results.
    timestamp = time.time()
    csv_logger = CSVLogger('./data/logs/' + model + '-' + 'training-' + \
        str(timestamp) + '.log')

    # Get the data and process it.
    if image_shape is None:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit
        )
    else:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit,
            image_shape=image_shape
        )

    # Get samples per epoch.
    # Multiply by 0.7 to attempt to guess how much of data.data is the train set.
    samples_per_epoch = ((len(data.data) * 0.7) // batch_size) * batch_size

    # Get generators.
    generator = data.frame_generator(batch_size, 'train', data_type, concat)
    val_generator = data.frame_generator(batch_size, 'test', data_type, concat)

    # Get the model.
    rm = ResearchModels(len(data.classes), model, seq_length, saved_model)

    # Fit!
    rm.model.fit_generator(
        generator=generator,
        samples_per_epoch=samples_per_epoch,
        nb_epoch=nb_epoch,
        verbose=1,
        callbacks=[checkpointer, tb, early_stopper, csv_logger],
        validation_data=val_generator,
        nb_val_samples=256)

def main():
    """These are the main training settings. Set each before running
    this file."""
    data_type = 'features'  # can be 'features' or 'images'
    seq_length = 40
    model = 'lstm'  # see `models.py` for more
    class_limit = None  # int, can be 1-101 or None
    saved_model = None  # None or weights file
    concat = False  # true for MLP only
    image_shape = None  # Use None for default or specify a new size

    train(data_type, seq_length, model, saved_model=saved_model,
          class_limit=class_limit, concat=concat, image_shape=image_shape)

if __name__ == '__main__':
    main()