train_cnn.py 4.27 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
Train on images split into directories. This assumes we've split
our videos into frames and moved them to their respective folders.

Based on:
https://keras.io/preprocessing/image/
and
https://keras.io/applications/
"""
from keras.applications.inception_v3 import InceptionV3
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping
from data import DataSet

data = DataSet()

# Helper: Save the model.
checkpointer = ModelCheckpoint(
    filepath='./data/checkpoints/inception.{epoch:03d}-{val_loss:.2f}.hdf5',
    verbose=1,
    save_best_only=True)

# Helper: Stop when we stop learning.
early_stopper = EarlyStopping(patience=10)

# Helper: TensorBoard
tensorboard = TensorBoard(log_dir='./data/logs/')

def get_generators():
    train_datagen = ImageDataGenerator(
        rescale=1./255,
        shear_range=0.2,
        horizontal_flip=True,
        rotation_range=10.,
        width_shift_range=0.2,
        height_shift_range=0.2)

    test_datagen = ImageDataGenerator(rescale=1./255)

    train_generator = train_datagen.flow_from_directory(
        './data/train/',
        target_size=(299, 299),
        batch_size=32,
        classes=data.classes,
        class_mode='categorical')

    validation_generator = test_datagen.flow_from_directory(
        './data/test/',
        target_size=(299, 299),
        batch_size=32,
        classes=data.classes,
        class_mode='categorical')

    return train_generator, validation_generator

def get_model(weights='imagenet'):
    # create the base pre-trained model
    base_model = InceptionV3(weights=weights, include_top=False)

    # add a global spatial average pooling layer
    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    # let's add a fully-connected layer
    x = Dense(1024, activation='relu')(x)
68
    # and a logistic layer
69
70
71
    predictions = Dense(len(data.classes), activation='softmax')(x)

    # this is the model we will train
Matt Harvey's avatar
Matt Harvey committed
72
    model = Model(inputs=base_model.input, outputs=predictions)
73
74
    return model

75
def freeze_all_but_top(model):
76
77
78
    """Used to train just the top layers of the model."""
    # first: train only the top layers (which were randomly initialized)
    # i.e. freeze all convolutional InceptionV3 layers
79
    for layer in model.layers[:-2]:
80
81
82
        layer.trainable = False

    # compile the model (should be done *after* setting layers to non-trainable)
83
    model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
84

85
    return model
86

87
def freeze_all_but_mid_and_top(model):
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    """After we fine-tune the dense layers, train deeper."""
    # we chose to train the top 2 inception blocks, i.e. we will freeze
    # the first 172 layers and unfreeze the rest:
    for layer in model.layers[:172]:
        layer.trainable = False
    for layer in model.layers[172:]:
        layer.trainable = True

    # we need to recompile the model for these modifications to take effect
    # we use SGD with a low learning rate
    model.compile(
        optimizer=SGD(lr=0.0001, momentum=0.9),
        loss='categorical_crossentropy',
        metrics=['accuracy', 'top_k_categorical_accuracy'])

    return model

def train_model(model, nb_epoch, generators, callbacks=[]):
    train_generator, validation_generator = generators
    model.fit_generator(
        train_generator,
Matt Harvey's avatar
Matt Harvey committed
109
        steps_per_epoch=100,
110
        validation_data=validation_generator,
Matt Harvey's avatar
Matt Harvey committed
111
112
        validation_steps=10,
        epochs=nb_epoch,
113
114
115
116
117
118
119
120
121
122
        callbacks=callbacks)
    return model

def main(weights_file):
    model = get_model()
    generators = get_generators()

    if weights_file is None:
        print("Loading network from ImageNet weights.")
        # Get and train the top layers.
123
        model = freeze_all_but_top(model)
124
125
126
127
128
129
        model = train_model(model, 10, generators)
    else:
        print("Loading saved model: %s." % weights_file)
        model.load_weights(weights_file)

    # Get and train the mid layers.
130
    model = freeze_all_but_mid_and_top(model)
131
132
133
134
135
136
    model = train_model(model, 1000, generators,
                        [checkpointer, early_stopper, tensorboard])

if __name__ == '__main__':
    weights_file = None
    main(weights_file)