train.py 2.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""
Train our RNN on bottlecap or prediction files generated from our CNN.
"""
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger
from models import ResearchModels
from data import DataSet
import time

def train(data_type, seq_length, model, saved_model=None,
          concat=False, class_limit=None, image_shape=None):
    # Set variables.
    nb_epoch = 1000
    batch_size = 32

    # Helper: Save the model.
    checkpointer = ModelCheckpoint(
        filepath='./data/checkpoints/' + model + '-' + data_type + \
            '.{epoch:03d}-{val_loss:.3f}.hdf5',
        verbose=1,
        save_best_only=True)

    # Helper: TensorBoard
    tb = TensorBoard(log_dir='./data/logs')

    # Helper: Stop when we stop learning.
    early_stopper = EarlyStopping(patience=10)

    # Helper: Save results.
    timestamp = time.time()
    csv_logger = CSVLogger('./data/logs/' + model + '-' + 'training-' + \
        str(timestamp) + '.log')

    # Get the data and process it.
    if image_shape is None:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit
        )
    else:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit,
            image_shape=image_shape
        )

    # Get samples per epoch.
    # Multiply by 0.7 to attempt to guess how much of data.data is the train set.
    samples_per_epoch = ((len(data.data) * 0.7) // batch_size) * batch_size

    # Get generators.
    generator = data.frame_generator(batch_size, 'train', data_type, concat)
    val_generator = data.frame_generator(batch_size, 'test', data_type, concat)

    # Get the model.
    rm = ResearchModels(len(data.classes), model, seq_length, saved_model)

    # Fit!
    rm.model.fit_generator(
        generator=generator,
        samples_per_epoch=samples_per_epoch,
        nb_epoch=nb_epoch,
        verbose=1,
        callbacks=[checkpointer, tb, early_stopper, csv_logger],
        validation_data=val_generator,
        nb_val_samples=256)

def main():
    """These are the main training settings. Set each before running
    this file."""
    model = 'lstm'  # see `models.py` for more
    saved_model = None  # None or weights file
Matt Harvey's avatar
Matt Harvey committed
72
    class_limit = None  # int, can be 1-101 or None
Matt Harvey's avatar
Matt Harvey committed
73
    seq_length = 40
Matt Harvey's avatar
Matt Harvey committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87

    # Chose images or features and image shape based on network.
    if model == 'conv_3d' or model == 'crnn':
        data_type = 'images'
        image_shape = (80, 80, 3)
    else:
        data_type = 'features'
        image_shape = None

    # MLP requires flattened features.
    if model == 'mlp':
        concat = True
    else:
        concat = False
88
89
90
91
92
93

    train(data_type, seq_length, model, saved_model=saved_model,
          class_limit=class_limit, concat=concat, image_shape=image_shape)

if __name__ == '__main__':
    main()