train.py 3.54 KB
Newer Older
1
2
3
4
5
6
7
8
9
"""
Train our RNN on bottlecap or prediction files generated from our CNN.
"""
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger
from models import ResearchModels
from data import DataSet
import time

def train(data_type, seq_length, model, saved_model=None,
10
11
          concat=False, class_limit=None, image_shape=None,
          load_to_memory=False):
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    # Set variables.
    nb_epoch = 1000
    batch_size = 32

    # Helper: Save the model.
    checkpointer = ModelCheckpoint(
        filepath='./data/checkpoints/' + model + '-' + data_type + \
            '.{epoch:03d}-{val_loss:.3f}.hdf5',
        verbose=1,
        save_best_only=True)

    # Helper: TensorBoard
    tb = TensorBoard(log_dir='./data/logs')

    # Helper: Stop when we stop learning.
    early_stopper = EarlyStopping(patience=10)

    # Helper: Save results.
    timestamp = time.time()
    csv_logger = CSVLogger('./data/logs/' + model + '-' + 'training-' + \
        str(timestamp) + '.log')

    # Get the data and process it.
    if image_shape is None:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit
        )
    else:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit,
            image_shape=image_shape
        )

    # Get samples per epoch.
    # Multiply by 0.7 to attempt to guess how much of data.data is the train set.
Matt Harvey's avatar
Matt Harvey committed
49
    steps_per_epoch = (len(data.data) * 0.7) // batch_size
50

51
52
53
54
55
56
57
58
    if load_to_memory:
        # Get data.
        X, y = data.get_all_sequences_in_memory(batch_size, 'train', data_type, concat)
        X_test, y_test = data.get_all_sequences_in_memory(batch_size, 'test', data_type, concat)
    else:
        # Get generators.
        generator = data.frame_generator(batch_size, 'train', data_type, concat)
        val_generator = data.frame_generator(batch_size, 'test', data_type, concat)
59
60
61
62
63

    # Get the model.
    rm = ResearchModels(len(data.classes), model, seq_length, saved_model)

    # Fit!
64
65
66
67
68
69
70
71
72
    if load_to_memory:
        # Use standard fit.
        rm.model.fit(
            X,
            y,
            batch_size=batch_size,
            validation_data=(X_test, y_test),
            verbose=1,
            callbacks=[checkpointer, tb, early_stopper, csv_logger],
Matt Harvey's avatar
Matt Harvey committed
73
            epochs=nb_epoch)
74
75
76
77
    else:
        # Use fit generator.
        rm.model.fit_generator(
            generator=generator,
Matt Harvey's avatar
Matt Harvey committed
78
79
            steps_per_epoch=steps_per_epoch,
            epochs=nb_epoch,
80
81
82
            verbose=1,
            callbacks=[checkpointer, tb, early_stopper, csv_logger],
            validation_data=val_generator,
Matt Harvey's avatar
Matt Harvey committed
83
            validation_steps=10)
84
85
86
87

def main():
    """These are the main training settings. Set each before running
    this file."""
Ubuntu's avatar
Ubuntu committed
88
    model = 'lstm'  # see `models.py` for more
89
    saved_model = None  # None or weights file
Ubuntu's avatar
Ubuntu committed
90
    class_limit = None  # int, can be 1-101 or None
Matt Harvey's avatar
Matt Harvey committed
91
    seq_length = 40
92
    load_to_memory = True  # pre-load the sequences into memory
Matt Harvey's avatar
Matt Harvey committed
93
94
95
96
97

    # Chose images or features and image shape based on network.
    if model == 'conv_3d' or model == 'crnn':
        data_type = 'images'
        image_shape = (80, 80, 3)
Matt Harvey's avatar
Matt Harvey committed
98
        load_to_memory = False
Matt Harvey's avatar
Matt Harvey committed
99
100
101
102
103
104
105
106
107
    else:
        data_type = 'features'
        image_shape = None

    # MLP requires flattened features.
    if model == 'mlp':
        concat = True
    else:
        concat = False
108
109

    train(data_type, seq_length, model, saved_model=saved_model,
110
111
          class_limit=class_limit, concat=concat, image_shape=image_shape,
          load_to_memory=load_to_memory)
112
113
114

if __name__ == '__main__':
    main()