validate_rnn.py 1.55 KB
Newer Older
Matt Harvey's avatar
Matt Harvey committed
1
2
3
4
"""
Validate our RNN. Basically just runs a validation generator on
about the same number of videos as we have in our test set.
"""
Matt Harvey's avatar
Matt Harvey committed
5
from keras.callbacks import TensorBoard, ModelCheckpoint, CSVLogger
Matt Harvey's avatar
Matt Harvey committed
6
7
8
9
from models import ResearchModels
from data import DataSet

def validate(data_type, model, seq_length=40, saved_model=None,
Matt Harvey's avatar
Matt Harvey committed
10
             concat=False, class_limit=None, image_shape=None):
Matt Harvey's avatar
Matt Harvey committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
    batch_size = 32

    # Get the data and process it.
    if image_shape is None:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit
        )
    else:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit,
            image_shape=image_shape
        )
Matt Harvey's avatar
Matt Harvey committed
25

Matt Harvey's avatar
Matt Harvey committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    val_generator = data.frame_generator(batch_size, 'test', data_type, concat)

    # Get the model.
    rm = ResearchModels(len(data.classes), model, seq_length, saved_model)

    # Evaluate!
    results = rm.model.evaluate_generator(
        generator=val_generator,
        val_samples=3200)

    print(results)
    print(rm.model.metrics_names)

def main():
    model = 'mlp'
    saved_model = 'data/ucf101/checkpoints/mlp-features.023-0.926.hdf5'

    if model == 'conv_3d' or model == 'crnn':
        data_type = 'images'
        image_shape = (80, 80, 3)
    else:
        data_type = 'features'
        image_shape = None

    if model == 'mlp':
        concat = True
    else:
        concat = False

    validate(data_type, model, saved_model=saved_model,
             concat=concat, image_shape=image_shape)

if __name__ == '__main__':
    main()