data.py 9.17 KB
Newer Older
1
"""
2
Class for managing our data.
3
4
5
6
7
8
9
10
"""
import csv
import numpy as np
import random
import glob
import os.path
import sys
import operator
11
import threading
12
from processor import process_image
13
from keras.utils import to_categorical
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class threadsafe_iterator:
    def __init__(self, iterator):
        self.iterator = iterator
        self.lock = threading.Lock()

    def __iter__(self):
        return self

    def __next__(self):
        with self.lock:
            return next(self.iterator)

def threadsafe_generator(func):
    """Decorator"""
    def gen(*a, **kw):
        return threadsafe_iterator(func(*a, **kw))
    return gen

33
34
35
36
37
38
39
40
41
42
class DataSet():

    def __init__(self, seq_length=40, class_limit=None, image_shape=(224, 224, 3)):
        """Constructor.
        seq_length = (int) the number of frames to consider
        class_limit = (int) number of classes to limit the data to.
            None = no limit.
        """
        self.seq_length = seq_length
        self.class_limit = class_limit
Matt Harvey's avatar
Matt Harvey committed
43
        self.sequence_path = os.path.join('data', 'sequences')
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        self.max_frames = 300  # max number of frames a video can have for us to use it

        # Get the data.
        self.data = self.get_data()

        # Get the classes.
        self.classes = self.get_classes()

        # Now do some minor data cleaning.
        self.data = self.clean_data()

        self.image_shape = image_shape

    @staticmethod
    def get_data():
        """Load our data from file."""
Matt Harvey's avatar
Matt Harvey committed
60
        with open(os.path.join('data', 'data_file.csv'), 'r') as fin:
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            reader = csv.reader(fin)
            data = list(reader)

        return data

    def clean_data(self):
        """Limit samples to greater than the sequence length and fewer
        than N frames. Also limit it to classes we want to use."""
        data_clean = []
        for item in self.data:
            if int(item[3]) >= self.seq_length and int(item[3]) <= self.max_frames \
                    and item[1] in self.classes:
                data_clean.append(item)

        return data_clean

    def get_classes(self):
        """Extract the classes from our data. If we want to limit them,
        only return the classes we need."""
        classes = []
        for item in self.data:
            if item[1] not in classes:
                classes.append(item[1])

        # Sort them.
        classes = sorted(classes)

        # Return.
        if self.class_limit is not None:
            return classes[:self.class_limit]
        else:
            return classes

    def get_class_one_hot(self, class_str):
        """Given a class as a string, return its number in the classes
        list. This lets us encode and one-hot it for training."""
        # Encode it first.
        label_encoded = self.classes.index(class_str)

        # Now one-hot it.
101
        label_hot = to_categorical(label_encoded, len(self.classes))
102

Matt Harvey's avatar
Matt Harvey committed
103
104
        assert len(label_hot) == len(self.classes)

105
106
107
108
109
110
111
112
113
114
115
116
117
        return label_hot

    def split_train_test(self):
        """Split the data into train and test groups."""
        train = []
        test = []
        for item in self.data:
            if item[0] == 'train':
                train.append(item)
            else:
                test.append(item)
        return train, test

118
    def get_all_sequences_in_memory(self, train_test, data_type):
119
120
121
122
123
124
125
126
        """
        This is a mirror of our generator, but attempts to load everything into
        memory so we can train way faster.
        """
        # Get the right dataset.
        train, test = self.split_train_test()
        data = train if train_test == 'train' else test

127
        print("Loading %d samples into memory for %sing." % (len(data), train_test))
128
129
130
131

        X, y = [], []
        for row in data:

132
133
134
            if data_type == 'images':
                frames = self.get_frames_for_sample(row)
                frames = self.rescale_list(frames, self.seq_length)
135

136
137
                # Build the image sequence
                sequence = self.build_image_sequence(frames)
138

139
140
141
142
143
144
145
            else:
                sequence = self.get_extracted_sequence(data_type, row)

                if sequence is None:
                    print("Can't find sequence. Did you generate them?")
                    raise

146
147
148
149
150
            X.append(sequence)
            y.append(self.get_class_one_hot(row[1]))

        return np.array(X), np.array(y)

151
    @threadsafe_generator
152
    def frame_generator(self, batch_size, train_test, data_type):
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        """Return a generator that we can use to train on. There are
        a couple different things we can return:

        data_type: 'features', 'images'
        """
        # Get the right dataset for the generator.
        train, test = self.split_train_test()
        data = train if train_test == 'train' else test

        print("Creating %s generator with %d samples." % (train_test, len(data)))

        while 1:
            X, y = [], []

            # Generate batch_size samples.
Matt Harvey's avatar
Matt Harvey committed
168
            for _ in range(batch_size):
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
                # Reset to be safe.
                sequence = None

                # Get a random sample.
                sample = random.choice(data)

                # Check to see if we've already saved this sequence.
                if data_type is "images":
                    # Get and resample frames.
                    frames = self.get_frames_for_sample(sample)
                    frames = self.rescale_list(frames, self.seq_length)

                    # Build the image sequence
                    sequence = self.build_image_sequence(frames)
                else:
                    # Get the sequence from disk.
185
                    sequence = self.get_extracted_sequence(data_type, sample)
186

187
188
                    if sequence is None:
                        raise ValueError("Can't find sequence. Did you generate them?")
189
190
191
192
193
194
195
196
197
198

                X.append(sequence)
                y.append(self.get_class_one_hot(sample[1]))

            yield np.array(X), np.array(y)

    def build_image_sequence(self, frames):
        """Given a set of frames (filenames), build our sequence."""
        return [process_image(x, self.image_shape) for x in frames]

199
    def get_extracted_sequence(self, data_type, sample):
200
201
        """Get the saved extracted features."""
        filename = sample[2]
202
203
        path = os.path.join(self.sequence_path, filename + '-' + str(self.seq_length) + \
            '-' + data_type + '.npy')
204
        if os.path.isfile(path):
205
            return np.load(path)
206
207
208
        else:
            return None

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def get_frames_by_filename(self, filename, data_type):
        """Given a filename for one of our samples, return the data
        the model needs to make predictions."""
        # First, find the sample row.
        sample = None
        for row in self.data:
            if row[2] == filename:
                sample = row
                break
        if sample is None:
            raise ValueError("Couldn't find sample: %s" % filename)

        if data_type == "images":
            # Get and resample frames.
            frames = self.get_frames_for_sample(sample)
            frames = self.rescale_list(frames, self.seq_length)
            # Build the image sequence
            sequence = self.build_image_sequence(frames)
        else:
            # Get the sequence from disk.
            sequence = self.get_extracted_sequence(data_type, sample)

            if sequence is None:
                raise ValueError("Can't find sequence. Did you generate them?")

        return sequence

236
237
238
239
    @staticmethod
    def get_frames_for_sample(sample):
        """Given a sample row from the data file, get all the corresponding frame
        filenames."""
Matt Harvey's avatar
Matt Harvey committed
240
        path = os.path.join('data', sample[0], sample[1])
241
        filename = sample[2]
Matt Harvey's avatar
Matt Harvey committed
242
        images = sorted(glob.glob(os.path.join(path, filename + '*jpg')))
243
244
245
246
        return images

    @staticmethod
    def get_filename_from_image(filename):
Matt Harvey's avatar
Matt Harvey committed
247
        parts = filename.split(os.path.sep)
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        return parts[-1].replace('.jpg', '')

    @staticmethod
    def rescale_list(input_list, size):
        """Given a list and a size, return a rescaled/samples list. For example,
        if we want a list of size 5 and we have a list of size 25, return a new
        list of size five which is every 5th element of the origina list."""
        assert len(input_list) >= size

        # Get the number to skip between iterations.
        skip = len(input_list) // size

        # Build our new output.
        output = [input_list[i] for i in range(0, len(input_list), skip)]

        # Cut off the last one if needed.
        return output[:size]

266
    def print_class_from_prediction(self, predictions, nb_to_return=5):
267
268
269
        """Given a prediction, print the top classes."""
        # Get the prediction for each label.
        label_predictions = {}
270
        for i, label in enumerate(self.classes):
271
272
273
274
275
276
277
278
279
280
281
282
283
284
            label_predictions[label] = predictions[i]

        # Now sort them.
        sorted_lps = sorted(
            label_predictions.items(),
            key=operator.itemgetter(1),
            reverse=True
        )

        # And return the top N.
        for i, class_prediction in enumerate(sorted_lps):
            if i > nb_to_return - 1 or class_prediction[1] == 0.0:
                break
            print("%s: %.2f" % (class_prediction[0], class_prediction[1]))