models.py 6.06 KiB
"""
A collection of models we'll use to attempt to classify videos.
"""
from keras.layers import Dense, Flatten, Dropout
from keras.layers.recurrent import LSTM
from keras.models import Sequential, load_model
from keras.optimizers import Adam
from keras.layers.wrappers import TimeDistributed
from keras.layers.convolutional import (Convolution2D, MaxPooling3D, Convolution3D,
    MaxPooling2D)
from collections import deque
import sys
class ResearchModels():
    def __init__(self, nb_classes, model, seq_length,
                 saved_model=None, features_length=2048):
        """
        `model` = one of:
            lstm
            crnn
            mlp
            conv_3d
        `nb_classes` = the number of classes to predict
        `seq_length` = the length of our video sequences
        `saved_model` = the path to a saved Keras model to load
        """
        # Set defaults.
        self.seq_length = seq_length
        self.load_model = load_model
        self.saved_model = saved_model
        self.nb_classes = nb_classes
        self.feature_queue = deque()
        # Set the metrics. Only use top k if there's a need.
        metrics = ['accuracy']
        if self.nb_classes >= 10:
            metrics.append('top_k_categorical_accuracy')
        # Get the appropriate model.
        if self.saved_model is not None:
            print("Loading model %s" % self.saved_model)
            self.model = load_model(self.saved_model)
        elif model == 'lstm':
            print("Loading LSTM model.")
            self.input_shape = (seq_length, features_length)
            self.model = self.lstm()
        elif model == 'crnn':
            print("Loading CRNN model.")
            self.input_shape = (seq_length, 80, 80, 3)
            self.model = self.crnn()
        elif model == 'mlp':
            print("Loading simple MLP.")
            self.input_shape = features_length * seq_length
            self.model = self.mlp()
        elif model == 'conv_3d':
            print("Loading Conv3D")
            self.input_shape = (seq_length, 80, 80, 3)
            self.model = self.conv_3d()
        else:
            print("Unknown network.")
            sys.exit()
        # Now compile the network.
        optimizer = Adam(lr=1e-6)  # aggressively small learning rate
        self.model.compile(loss='categorical_crossentropy', optimizer=optimizer,
                           metrics=metrics)
    def lstm(self):
        """Build a simple LSTM network. We pass the extracted features from
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
our CNN to this model predomenently.""" # Model. model = Sequential() model.add(LSTM(4096, return_sequences=True, input_shape=self.input_shape, dropout_W=0.5, dropout_U=0.5)) model.add(Flatten()) model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(self.nb_classes, activation='softmax')) return model def crnn(self): """Build a CNN into RNN. Starting version from: https://github.com/udacity/self-driving-car/blob/master/ steering-models/community-models/chauffeur/models.py """ model = Sequential() model.add(TimeDistributed(Convolution2D(32, 3, 3, init= "he_normal", activation='relu', border_mode='valid'), input_shape=self.input_shape)) model.add(TimeDistributed(Convolution2D(32, 3, 3, init= "he_normal", activation='relu', border_mode='valid'))) model.add(TimeDistributed(MaxPooling2D())) model.add(TimeDistributed(Convolution2D(48, 3, 3, init= "he_normal", activation='relu', border_mode='valid'))) model.add(TimeDistributed(Convolution2D(48, 3, 3, init= "he_normal", activation='relu', border_mode='valid'))) model.add(TimeDistributed(MaxPooling2D())) model.add(TimeDistributed(Convolution2D(64, 3, 3, init= "he_normal", activation='relu', border_mode='valid'))) model.add(TimeDistributed(Convolution2D(64, 3, 3, init= "he_normal", activation='relu', border_mode='valid'))) model.add(TimeDistributed(MaxPooling2D())) model.add(TimeDistributed(Convolution2D(128, 3, 3, init= "he_normal", activation='relu', border_mode='valid'))) model.add(TimeDistributed(Convolution2D(128, 3, 3, init= "he_normal", activation='relu', border_mode='valid'))) model.add(TimeDistributed(MaxPooling2D())) model.add(TimeDistributed(Flatten())) model.add(LSTM(256, return_sequences=True)) model.add(Flatten()) model.add(Dense(512)) model.add(Dropout(0.5)) model.add(Dense(self.nb_classes, activation='softmax')) return model def mlp(self): """Build a simple MLP.""" # Model. model = Sequential() model.add(Dense(512, input_dim=self.input_shape)) model.add(Dropout(0.5))
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
model.add(Dense(512)) model.add(Dropout(0.5)) model.add(Dense(self.nb_classes, activation='softmax')) return model def conv_3d(self): """ Build a 3D convolutional network, based loosely on C3D. https://arxiv.org/pdf/1412.0767.pdf """ # Model. model = Sequential() model.add(Convolution3D( 32, 7, 7, 7, activation='relu', input_shape=self.input_shape )) model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2))) model.add(Convolution3D(64, 3, 3, 3, activation='relu')) model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2))) model.add(Convolution3D(128, 2, 2, 2, activation='relu')) model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2))) model.add(Flatten()) model.add(Dense(256)) model.add(Dropout(0.2)) model.add(Dense(256)) model.add(Dropout(0.2)) model.add(Dense(self.nb_classes, activation='softmax')) return model