train.py 3.54 KiB
"""
Train our RNN on extracted features or images.
"""
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger
from models import ResearchModels
from data import DataSet
import time
import os.path
def train(data_type, seq_length, model, saved_model=None,
          class_limit=None, image_shape=None,
          load_to_memory=False, batch_size=32, nb_epoch=100):
    # Helper: Save the model.
    checkpointer = ModelCheckpoint(
        filepath=os.path.join('data', 'checkpoints', model + '-' + data_type + \
            '.{epoch:03d}-{val_loss:.3f}.hdf5'),
        verbose=1,
        save_best_only=True)
    # Helper: TensorBoard
    tb = TensorBoard(log_dir=os.path.join('data', 'logs', model))
    # Helper: Stop when we stop learning.
    early_stopper = EarlyStopping(patience=5)
    # Helper: Save results.
    timestamp = time.time()
    csv_logger = CSVLogger(os.path.join('data', 'logs', model + '-' + 'training-' + \
        str(timestamp) + '.log'))
    # Get the data and process it.
    if image_shape is None:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit
    else:
        data = DataSet(
            seq_length=seq_length,
            class_limit=class_limit,
            image_shape=image_shape
    # Get samples per epoch.
    # Multiply by 0.7 to attempt to guess how much of data.data is the train set.
    steps_per_epoch = (len(data.data) * 0.7) // batch_size
    if load_to_memory:
        # Get data.
        X, y = data.get_all_sequences_in_memory('train', data_type)
        X_test, y_test = data.get_all_sequences_in_memory('test', data_type)
    else:
        # Get generators.
        generator = data.frame_generator(batch_size, 'train', data_type)
        val_generator = data.frame_generator(batch_size, 'test', data_type)
    # Get the model.
    rm = ResearchModels(len(data.classes), model, seq_length, saved_model)
    # Fit!
    if load_to_memory:
        # Use standard fit.
        rm.model.fit(
            batch_size=batch_size,
            validation_data=(X_test, y_test),
            verbose=1,
            callbacks=[tb, early_stopper, csv_logger],
            epochs=nb_epoch)
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
else: # Use fit generator. rm.model.fit_generator( generator=generator, steps_per_epoch=steps_per_epoch, epochs=nb_epoch, verbose=1, callbacks=[tb, early_stopper, csv_logger, checkpointer], validation_data=val_generator, validation_steps=40, workers=4) def main(): """These are the main training settings. Set each before running this file.""" # model can be one of lstm, lrcn, mlp, conv_3d, c3d model = 'lstm' saved_model = None # None or weights file class_limit = None # int, can be 1-101 or None seq_length = 40 load_to_memory = False # pre-load the sequences into memory batch_size = 32 nb_epoch = 1000 # Chose images or features and image shape based on network. if model in ['conv_3d', 'c3d', 'lrcn']: data_type = 'images' image_shape = (80, 80, 3) elif model in ['lstm', 'mlp']: data_type = 'features' image_shape = None else: raise ValueError("Invalid model. See train.py for options.") train(data_type, seq_length, model, saved_model=saved_model, class_limit=class_limit, image_shape=image_shape, load_to_memory=load_to_memory, batch_size=batch_size, nb_epoch=nb_epoch) if __name__ == '__main__': main()