""" Train our RNN on extracted features or images. """ from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger from models import ResearchModels from data import DataSet import time import os.path def train(data_type, seq_length, model, saved_model=None, class_limit=None, image_shape=None, load_to_memory=False, batch_size=32, nb_epoch=100): # Helper: Save the model. checkpointer = ModelCheckpoint( filepath=os.path.join('data', 'checkpoints', model + '-' + data_type + \ '.{epoch:03d}-{val_loss:.3f}.hdf5'), verbose=1, save_best_only=True) # Helper: TensorBoard tb = TensorBoard(log_dir=os.path.join('data', 'logs', model)) # Helper: Stop when we stop learning. early_stopper = EarlyStopping(patience=5) # Helper: Save results. timestamp = time.time() csv_logger = CSVLogger(os.path.join('data', 'logs', model + '-' + 'training-' + \ str(timestamp) + '.log')) # Get the data and process it. if image_shape is None: data = DataSet( seq_length=seq_length, class_limit=class_limit ) else: data = DataSet( seq_length=seq_length, class_limit=class_limit, image_shape=image_shape ) # Get samples per epoch. # Multiply by 0.7 to attempt to guess how much of data.data is the train set. steps_per_epoch = (len(data.data) * 0.7) // batch_size if load_to_memory: # Get data. X, y = data.get_all_sequences_in_memory('train', data_type) X_test, y_test = data.get_all_sequences_in_memory('test', data_type) else: # Get generators. generator = data.frame_generator(batch_size, 'train', data_type) val_generator = data.frame_generator(batch_size, 'test', data_type) # Get the model. rm = ResearchModels(len(data.classes), model, seq_length, saved_model) # Fit! if load_to_memory: # Use standard fit. rm.model.fit( X, y, batch_size=batch_size, validation_data=(X_test, y_test), verbose=1, callbacks=[tb, early_stopper, csv_logger], epochs=nb_epoch) else: # Use fit generator. rm.model.fit_generator( generator=generator, steps_per_epoch=steps_per_epoch, epochs=nb_epoch, verbose=1, callbacks=[tb, early_stopper, csv_logger, checkpointer], validation_data=val_generator, validation_steps=40, workers=4) def main(): """These are the main training settings. Set each before running this file.""" # model can be one of lstm, lrcn, mlp, conv_3d, c3d model = 'lstm' saved_model = None # None or weights file class_limit = None # int, can be 1-101 or None seq_length = 40 load_to_memory = False # pre-load the sequences into memory batch_size = 32 nb_epoch = 1000 # Chose images or features and image shape based on network. if model in ['conv_3d', 'c3d', 'lrcn']: data_type = 'images' image_shape = (80, 80, 3) elif model in ['lstm', 'mlp']: data_type = 'features' image_shape = None else: raise ValueError("Invalid model. See train.py for options.") train(data_type, seq_length, model, saved_model=saved_model, class_limit=class_limit, image_shape=image_shape, load_to_memory=load_to_memory, batch_size=batch_size, nb_epoch=nb_epoch) if __name__ == '__main__': main()