Viewing a single comment thread. View all comments

Bbrhuft t1_jcdxda3 wrote

Po-218, Lead-214 and bismuth-214 are singly ionized ions. Since they are singly ionized, reactions with oxygen are not favoured, they are instead predicted to hydrolyse with hydroxyl radicals and with trace Volatile Organic Compounds (VOCs) that often contaminate air, indoor air in particular.

Also, you must consider the effects of the radiation and kinetic recoil of the ions, their velocity, c. 10-13 million mph for Po-218 ions after they emit an Alpha particles at 7% the speed of light. Lead-214 and Bismuth-214 also form in ionization trails, generated by Beta particles. As a result, chemical reactions, and thus neutralization of the ions, take place with hydroxyl radicals generated from ionized water vapour, and also, likely NO₂.

The reaction products of radon progeny grow and form ultrafine particles, 1.2 to 2 nanometres in diameter, these likely consist of 5 to 8 molecules of water and a few molecules of VOCs. These stick to dust or settle on solid surfaces, i.e. radon progeny plate out.

>The chemical and physical properties of 218Po immediately following its formation from 222Rn decay are important in determining its behavior in indoor atmospheres and play a major part in determining its potential health effects. In 88% of the decays, a singly charged, positive ion of 218Po is obtained at the end of its recoil path. > >These ions can interact with water vapor or other volatile organic compounds (VOCs) that may exist in indoor air. > >The ions can be neutralized by 3 different mechanisms, small-ion recombination, electron transfer, and electron scavenging. In typical indoor air, the ion will be rapidly neutralized by transfer of electrons from lower ionization potential gases such as NO2. > >The neutral molecule can then become incorporated in ultrafine particles formed by the radiolytic processes in the recoil path. These particles will typically be formed by the presence of the air ions produced by the passage of the emitted α-particle through ion-induced nucleation. > >In addition these energetic ions can react with water molecules to produce hydroxyl radicals. > >Thus, the decay of the radon nucleus produces a variety of effects and can result in changes in the size of the radioactive species that includes the radon progeny.

Refs.:

Castleman Jr, A.W., 1991. Consideration of the chemistry of radon progeny. Environmental science & technology, 25(4), pp.730-735.

Hopke, P., 1996. The initial atmospheric behavior of radon decay products. Journal of Radioanalytical and Nuclear Chemistry, 203(2), pp.353-375.

2